

Impact of drought on soil CO₂ efflux and vertical partitioning of soil CO₂ production at a beech and a pine forest site in north-east Germany

¹Hubert Jochheim, ¹Stephan Wirth, ²Sinikka Paulus, ³Valentin Gartiser, ¹Christoph Haas, ¹Horst H. Gerke, ³Martin Maier

Challenge

Soil respiration is one of the major CO₂ fluxes in forests and has to be quantified to assess forest ecosystems as carbon source or sink.

We compared CO₂ efflux from soil of two ICP Forests Level II plots, a beech site (DE1207, Brunic Arenosol (Dystric), medium-fine sand, mor-like moder), and a pine site (DE1203, Haplic Podsol, medium-coarse sand, mor) over six years with different climate conditions. We investigated the impact of drought on vertical distribution of CO_2 production.

Methods

Continuous measurement (30 min steps) of soil CO₂ in different soil depths (surface, 0, 10, 20, 30, 100 cm) using hydrophobic, gas-permeable membrane probes in a closed loop (Jochheim et al. 2018, J. Plant Nutr. Soil Sci., https://doi.org/10.1002/jpln.201700259).

Measurement of soil moisture and temperature at 10, 20, 30, 100 cm (TRIME probes). Soil gas diffusion coefficients were estimated at different levels of soil moisture. CO_2 fluxes and vertical partitioning of CO_2 production were calculated using the flux-gradient-approach, optimized by an inverse model. Chamber measurements, conducted in 2018 and 2019 were used to validate the model.

Conclusions

The flux-gradient-approach, optimized by an inverse model is an appropriate measure to estimate the CO₂ efflux and for vertical partitioning of CO_2 production.

Vertical partitioning of CO₂ production allows relating CO2 production to soil microbial processes and the dynamic of root activity, in contrast to the chamber method.

Drought reduces CO_2 efflux from soils and the CO_2 production mainly from upper soil layers.

Beech site

Germany

- ¹ Leibniz Centre for Agricultural Landscape Research (ZALF), Müncheberg, Germany
- ² Max Planck Institute for Biogeochemistry, Jena, Germany
- ³ Forest Research Institute Baden Württemberg (FVA), Freiburg,

Results

Pine site

Leibniz Centre for Agricultural Landscape Research (ZALF) · Eberswalder Straße 84 · 15374 Müncheberg · Germany www.zalf.de · hubert.jochheim@zalf.de · · Date: June 08 2021