

Forstliche Versuchsund Forschungsanstalt Baden-Württemberg

The water budget of forests the big unknown outside of our intensive monitoring plots?

Raphael Habel, <u>Heike Puhlmann</u>, Ann-Christin Müller Forest Research Institute Baden-Württemberg

Wendelin Weis, Axel Wellpott, Wolfgang Falk Bavarian State Institute of Forestry

Stefan Fleck, Bernd Ahrends Northwest German Forest Research Institute

Contact: heike.puhlmann@forst.bwl.de

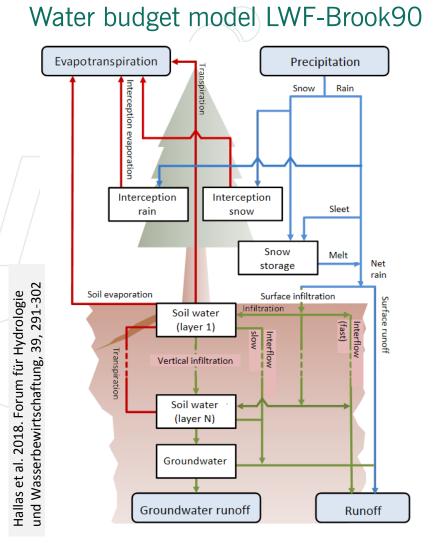
Heike Puhlmann et al.: Water budget of forests outside of monitoring plots

Background & Aims

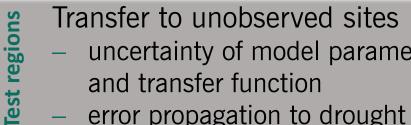
- Increasing drought damages in forests
- Need for recommendations for forest conversion & reforestation
- Estimation of the water balance and future forecasts as a basis for silvicultural decisions

Can we estimate the water balance sufficiently reliably outside intensively monitored areas?

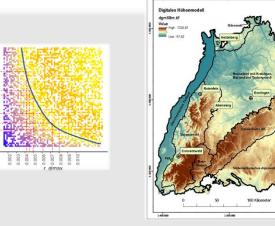
Project objectives:

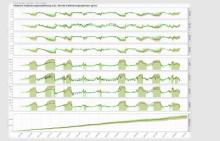

- Calibrate LWF-Brook90 on Level II plots
- Derive rules for the parameterisation of LWF-Brook90 for modelling at forest sites without measured data
- Assess model uncertainties

Methods



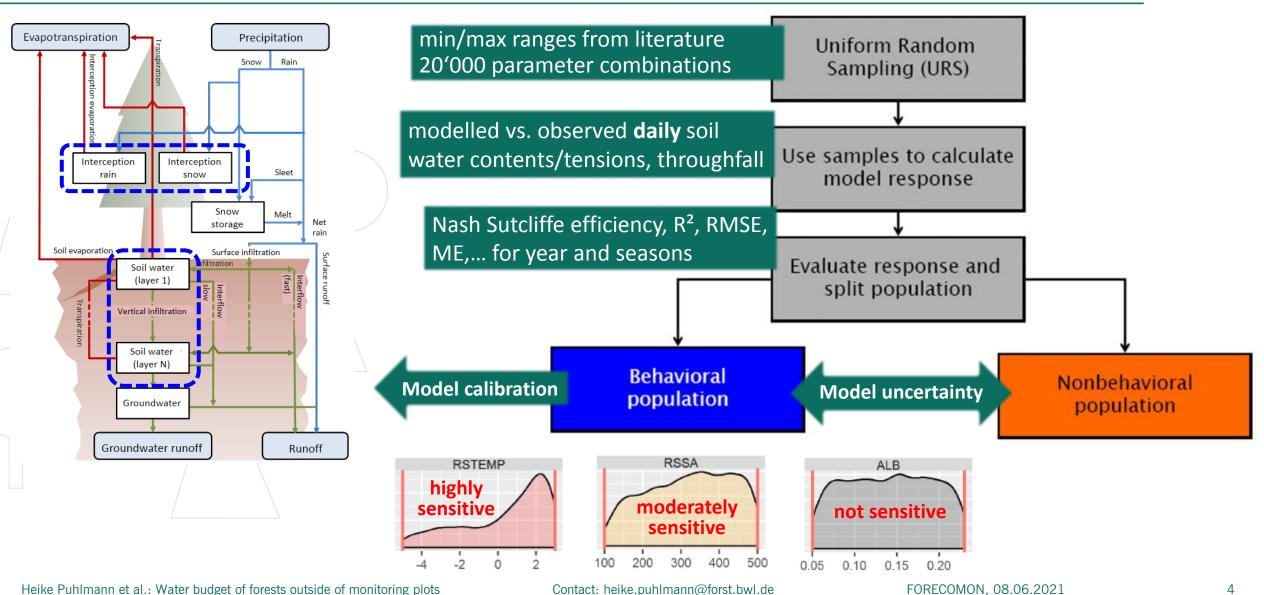
Sensitivity analysis


- important model parameters
- irrelevant model parameters
- sensible value ranges


Model calibration

- structural model problems
- best fitting parameter values
- **CP Forest Level II sites** Uncertainty analysis
 - sites/time periods with high/ low prediction uncertainty

- uncertainty of model parameters and transfer function
- error propagation to drought indices



Methods: Sensitivity analyses after Hornberger, Spear & Young (HSY)

Results: Sensitive model parameters

Tab.: Number of sensitive objective functions per site

		Altensteig - Fichte			Conventwald - Buche			Conventwald - Fichte			Heidelberg - Buche			Heidelberg - Fichte			hoch sensitiv	
		FULL	VEG	WIN	FULL	VEG	WIN	FULL	VEG	WIN	FULL	VEG	WIN	FULL	VEG	WIN		-
	DURATN	0	0	2	2	2	0	3	3	2	2	2	0	3	3	0	24	
/	R5	0	0	1	0	0	0	2	2	2	2	0	2	2	2	2	17	Π
	GLMAX	0	0	1	0	0	0	2	2	2	0	0	0	2	2	2	13	
	GLMIN	0	0	1	0	0	0	2	2	2	0	0	0	2	2	2	13	1
	RSTEMP	2	0	2	0	0	1	2	0	3	0	0	0	0	0	2	12	
	FRINTL	1	1	1	0	0	0	2	2	2	0	0	0	0	0	0	9	
	CINTRL	0	0	0	0	0	0	2	2	2	0	0	0	0	0	0	6	
	CVPD	0	0	0	0	0	0	0	1	0	0	0	0	2	2	0	5	
	CZR	0	0	0	0	0	0	2	1	2	0	0	0	0	0	0	5	
	LWIDTH	0	0	0	0	0	2	0	0	0	0	0	2	0	0	0	4	
	FRINTS	0	0	1	0	0	0	0	0	2	0	0	0	0	0	0	3	
	WNDRAT	0	0	0	0	0	0	0	0	2	0	0	0	0	0	0	2	
	RSSA	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	1	
	ALB	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
	ALBSN	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
	- C1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
	C2	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
	C3	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
	CCFAC	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
	CINTRS	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
	CINTSL	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
	CINTSS	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
	CR	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
	CS	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
	CZS	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
	FETCH	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
	FSINTL	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
	FSINTS	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
	FXYLEM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
	GRDMLT	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	al -
	HR	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	de
	HS	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	

• 60 target functions:

5 Level II sites

x 2 measures (soil water content, throughfall)

x 2 goodnes-of-fit measures (RMSE, wRsq)

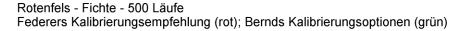
x 3 aggregations (year, growing/dormant season)

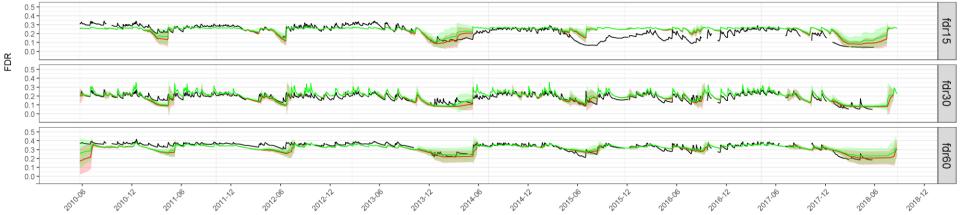
- 56 free model parameters; soil water retention function and water conductivity were fixed
- 43 model parameters influenced the model output only marginally
- most sensitive parameters were those that control
 - stomata function & canopy conductance
 - interception capacity & dynamics

Results: Transfer to test regions

based on sensitivity and uncertainty analyses:

- insensitive parameters: fixed at standard value
- sensitive parameters:
 - transfer functions based on data evaluation from Level II (and other) plots, e.g. DURATN (disaggregation of daily rainfall to hourly data),
 - calibrated on 59 German Level II plots, e.g. GLMAX (stomata conductance)
 - correlated sensitive parameters: parameters fixed for which measurements exist, others calibrated, e.g. interception parameters (LWIDTH fixed (leaf size), FRINTL calibrated)


project output: recipe for LWF-Brook90 parameterisation


Coming soon ;

Preliminary results: Uncertainty analysis

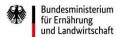
- comparatively larger uncertainty in
 - resaturation periods in autumn
 - less severe drought events
 - comparatively smaller uncertainty in
 - begin of vegetation period
 - extreme droughts

To Dos:

- Uncertainty assessment on more Level II plots
- Ranking of drought indices according to related model uncertainty

Conclusions

- Forest management needs decision support for climate adaptation, regardless of whether we have a blurred (model) view of the future.
- No matter how hard we try, process-based modeling will always be associated with uncertainty.
- On-site measurements such as ICP-Forest Level II are essential for model calibration and development of transfer functions/rules for unobserved sites.
- The LWF-Brook90 parameterization "recipe book" helps reduce model bias and sharpen our drought predictions.
- Model predictions seem to be less uncertain for extreme droughts than for moderate droughts.
- After completion, uncertainty analyses will help identify time periods and water budget/drought indices will large/small prediction uncertainty.



Thank you for listening!

The project "Site factor water budget in the context of climate change" (WHH-KW) is funded by the German Federal Ministry of Food and Agriculture and the Federal Ministry for the Environment, Nature Conservation and Nuclear Safety (Waldklimafonds).

Gefördert durch:

Bundesministerium für Umwelt, Naturschutz und nukleare Sicherheit

