Phosphorus leaching in beech forest soils as affected by fertilization and seasons

Jasmin Fetzer^{1,2}, Emmanuel Frossard², Klaus Kaiser³, Frank Hagedorn¹

1685 **SDI**

BACKGROUND

- Soil phosphorus (P) can become depleted during ecosystem development and may (co-)limit plant and soil microbial communities
- Leaching is a key pathway of P depletion, however can vary seasonally
 - Anthropogenic activities may alter the balance between P and other major nutrients, such as nitrogen (N)

Aim: Quantify organic and inorganic N and P leaching as affected by seasons as well as N and P fertilization, and related to site specific C:N:P ratios

LUE

BBR

high P

low P

METHODS

- 2 beech forest sites of high and low P stock with zero-tension lysimeters
- 3 fertilization treatments (N, P, and NxP) + control (3 reps)
- (150 kg/ha N as $\rm NH_4NO_3,$ in 5 applications, starting 2016, 50 kg/ha P as $\rm KH_2PO_4,$ 1 application in 2016)
- 3 soil depths
- 4 seasons

Inorganic nutrients showed strong seasonal patterns whereas organic forms remained rather constant

Particular narrow DOC:DON ratios in the hot and dry summer 2018 suggest a release of microbial N and P due to cell lysis by drying an rewetting (increased P leaching)

Increase in total P leaching with fertilization in the Oe/Oa horizons

	High P (BBR)	Low P (LUE)
+ N	+ 33%	+ 198%
+ P	+ 51%	+ 156%
+ NxP	+75%	+ 10%

Fertilization effects on inorganic P leaching were site dependent and stronger at the low P site. N leaching increased consistently with N fertilization. Organic nutrients were not (DOP) or less (DON) affected.

REFERENCES

ACKNOWLEDGMENT

This project is funded by the German Research Foundation DFG Research Unit SPP 1685

Corresponding author: Jasmin Fetzer, jasmin.fetzer@wsl.ch

1 Swiss Federal Research Institute WSL, Switzerland, 2 Institute of Agricultural Sciences, ETH Zürich, Switzerland, 3 Institute of Agricultural and Nutritional Sciences, Martin-Luther-University Halle-Wittenberg, Germany

)			
		ETH zürich		
WAIN FINDINGS				
Influence of N and P inputs on P leaching				
	low P site high P site		P site	
Susceptibility to climatic changes				
Inorganic nutrient leaching		> Organ	Organic nutrient leaching	
Phosphorus		> N	Nitrogen	
1			I Serec	
		1 Cart	and the	
1			12.80	
		$k \setminus H$	Start V	
		- VA	A HE	
		H	Litter	
14				

Oe/Oa

horizon

A horizon

- Nutrient-limited ecosystems are especially susceptible to changes in N and P input and in the nutrient balance
- Estimated P fluxes from the organic layers were comparable in magnitude to reported inputs
- Changes in climate towards more frequent dry and hot extremes seem to accerlate N and P leaching