

Impact of pollen on throughfall biochemistry in European temperate and boreal forests

 <u>Verstraeten, Arne</u>*; Gottardini, Elena; Bruffaerts, Nicolas; Cristofolini, Fabiana; Vanguelova, Elena; Neirynck, Johan; Genouw, Gerrit; De Vos, Bruno; Waldner, Peter; Thimonier, Anne; Nussbaumer, Anita; Neumann, Mathias; Benham, Sue; Rautio, Pasi; Ukonmaanaho, Liisa; Merilä, Päivi; Saarto, Annika; Reiniharju, Jukka; Roskams, Peter; Sioen, Geert; Cools, Nathalie; Clarke, Nicholas;
 Timmermann, Volkmar; Dietrich, Hans-Peter; Nicolas, Manuel; Schmitt, Maria; Meusburger, Katrin; Schüler, Silvio; Kowalska, Anna; Kasprzyk, Idalia; Kluska, Katarzyna; Grewling, Łukasz; Święta-Musznicka, Joanna; Latałowa, Małgorzata; Zimny, Marcelina; Malkiewicz, Małgorzata; Vesterdal, Lars; Manninger, Miklós; Magyar, Donát; Titeux, Hugues; Pihl-Karlsson, Gunilla; Ferretti, Marco

*Research Institute for Nature and Forest (INBO), Flanders, Belgium (arne.verstraeten@inbo.be)

0

Institute of Silviculture (WALDBAU)

Background

- Throughfall (TF) biochemistry is still poorly understood
- In the spring, trees bloom and disperse pollen => TF gets a yellow/brown color

1

- Unexpected peaks in potassium (K⁺), dissolved organic carbon (DOC) and nitrite (NO₂⁻) show up <-> some nitrate (NO₃⁻) goes missing!
- Most obvious (but not exclusive) in broadleaved stands (beech, oak)
- Impact is greater in 'mast years'
- Many TF samples are rated as 'contaminated' and results are often corrected or even not submitted to the deposition database

=> systematic error

=> lack of reliable TF data for the spring period

Objectives of this study

1. Dissolution experiment

- Investigating the qualitative (quantitative) impact of pollen on TF.
- 2. Inter-annual study (data evaluation)
- Trying to find a link between TF deposition fluxes and airborne pollen concentrations.
- Calculating the quantitative impact of pollen on TF deposition fluxes.
- 3. Intra-annual study (TF samples)
- Gathering information on TF pollen spectra and investigating the link with TF fluxes / DOC characteristics.

1. Dissolution experiment

- A 7-day dissolution experiment was conducted with: - fresh pollen of *F. sylvatica*, *Quercus robur*, *Pinus sylvestris* and
 - Pinus nigra (FL),
 archived/dehydrated pollen of Picea abies (IT) and Betula pendula (FL), including a liquid N₂-sterilized control for B. pendula.,
 - bud scales and flower stalks of *Fagus sylvatica* (from litterfall traps in FL)

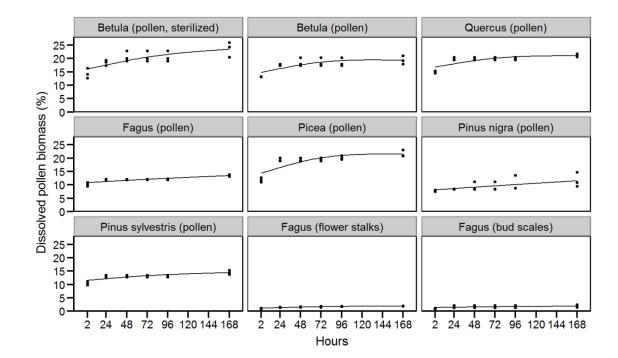
F. sylvatica

F. sylvatica

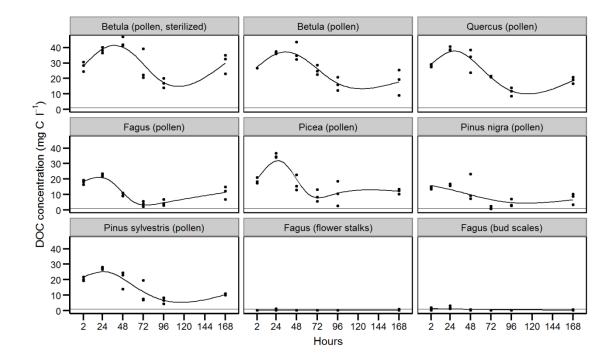
P. nigra

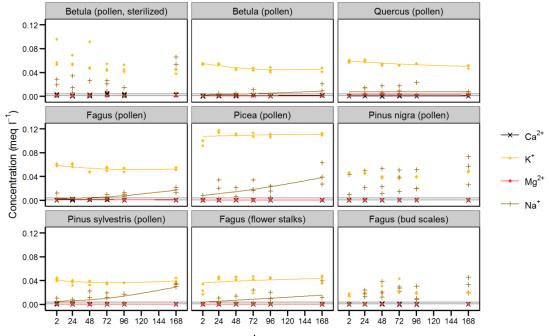
P. sylvestris

1. Dissolution experiment

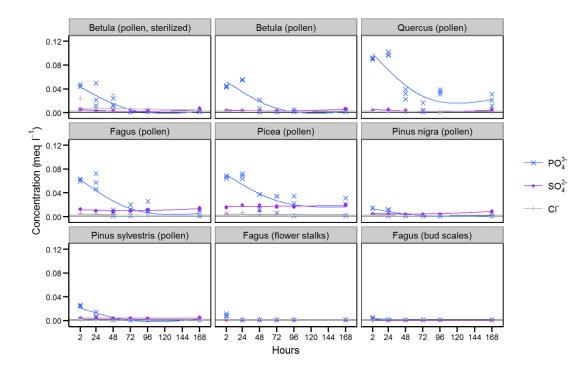

- 9 treatments, 3 replicates
- $50\pm0.52 \text{ mg OM}$ was added to 200 ml NaNO₃ solution (50 mg NO₃⁻ l⁻¹)
- Samples (15 ml) for chemical analysis were taken after 2h, 24h, 48h, 72h, 96h and 168h.
- Analysis:
 - $\label{eq:ca2+, K+, Mg^2+, Na+, Cl-, NO_3-, NO_2-, NH_4+, SO_4^2-, PO_4^3- (ion chromatography, Dionex) }$
 - DOC and TN (=> DON)
 (Formax^{HT} C/N analyzer)
 - > Alkalinity (HCO_{3}^{-}) (titration)

Conifers: Pollen floats

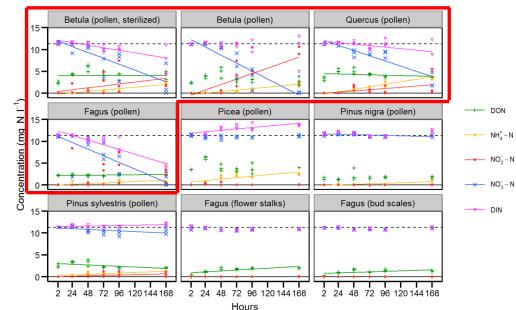

 \blacktriangleright EC and O₂ (electrode)


- 12 24% of pollen biomass dissolved
- <2% of bud scales and flower stalks

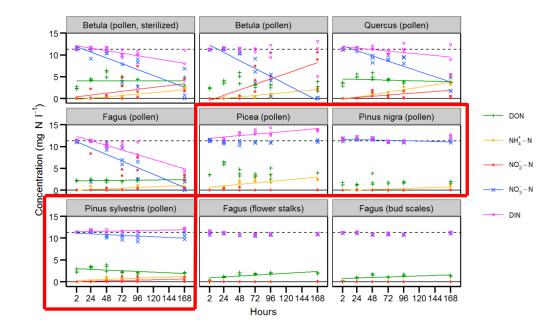
• Pollen released **DOC**, K^+ , PO_4^{3-} , and small amounts of SO_4^{2-} and Na^+



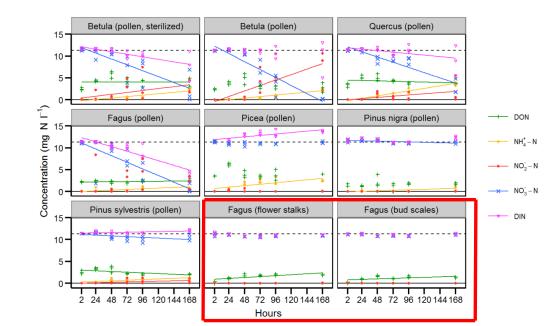
• Pollen released DOC, K^+ , PO_4^{3-} , and small amounts of SO_4^{2-} and Na^+


hours

• Pollen released DOC, K⁺, **PO₄³⁻**, and small amounts of **SO₄²⁻** and Na⁺


N compounds - pollen of broadleaves

- NO_3^- decreased (-0.050 -0.076 mg N l⁻¹ h⁻¹), 75 98% of added NO_3^- was reduced after 7 days.
- Simultaneously, accumulation of NO₂⁻ (0.011 0.052 mg N l⁻¹ h⁻¹) and NH₄⁺ (0.007 0.027 mg N l⁻¹ h⁻¹).
- Inorganic N decreased (-0.014 -0.045 mg N l⁻¹ h⁻¹) and 13 65% of added N was lost after 7 days, probably as gaseous nitric oxide (NO). NO is a key signaling molecule involved e.g., in pollen germination and pollen tube growth (Domingos et al., 2015 *Mol. Plant*). NO was probably formed via the nitrate reductase pathway because conditions were oxic (>1 mg O₂ l⁻¹).
- Sterilization (*Betula*) made no difference, indicating that pollen induces the observed effects and not microorganisms.

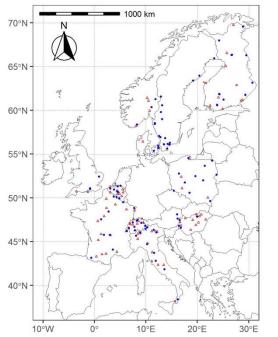

N compounds - pollen of conifers

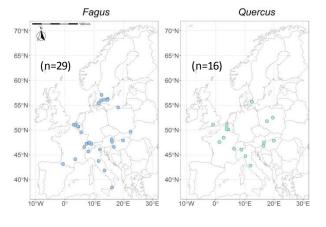
- NO_3^- was stable (*Picea*) or only slightly decreased (-0.004 -0.007 mg N l⁻¹ h⁻¹).
- Only small amounts of NO₂⁻ were formed.
- NH₄⁺ accumulated (0.005 0.014 mg N l⁻¹ h⁻¹), which might be the result of enzymatic degradation of amino acids as observed in the nectar of certain plants and might be a defense mechanism (Prŷs-Jones and Willmer, 1992 *Biol. J. Linn. Soc.*).
- Inorganic N increased with 9% for *Pinus sylvestris* and 22% for *Picea* (stable for *Pinus nigra*).

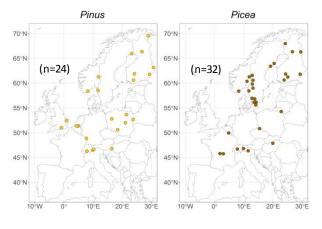
N compounds - flower stalks and bud scales (F. sylvatica)

- No changes in the concentrations of inorganic N compounds were observed.
- Concentrations of NO_2^- and NH_4^+ stayed below the LOQ during the experiment.
- Some DON was released

Objectives of this study


- **1.** Dissolution experiment
- Investigating the qualitative (quantitative) impact of pollen on TF.


2. Inter-annual study (data evaluation)


- Trying to find a link between TF deposition fluxes and airborne pollen concentrations.
- Calculating the quantitative impact of pollen on TF deposition fluxes.
- 3. Intra-annual study (TF samples)
- Gathering information on TF pollen spectra and investigating the link with TF fluxes / DOC characteristics.

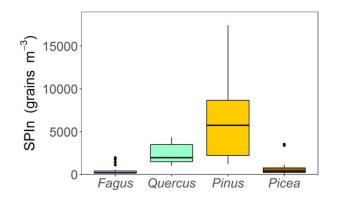
2. Inter-annual study (data evaluation)

- TF data from 98 Level II plots
- Airborne pollen concentrations (Seasonal Pollen Integral, SPIn) from 80 nearby (<200 km) aerobiological monitoring stations
- Grouped by tree genus (Fagus, Quercus, Pinus, Picea) (3 mixed)

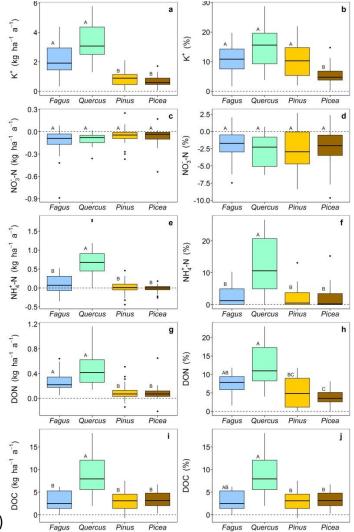
- Level II plots
- Aerobiological monitoring stations

2. Inter-annual study (data evaluation)

- Generalized additive mixed models (GAMM's) were run for K⁺, N-NO₃⁻, N-NO₂⁻, N-NH₄⁺, DOC and DON, e.g.: *TF K⁺_{pollen} = s(SPIn, bs="cr", k=3) + VarIdent(Country)*
- For each plot the main period of pollen dispersal during the spring* (arbitrary 2 months; halfmonthly window) was determined based on daily airborne pollen concentrations available for a limited number of sites and TF data:

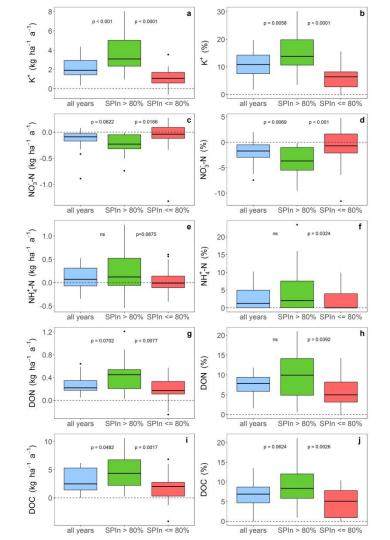

	-	-	1 May- 30 Jun	15 May- 15 Jul	1 Jun- 31 Jul	# plots
Fagus	24	5				29
Quercus	13	3				16
Pinus		4	10	6	4	24
Picea		4	9	14	5	32

 The contribution of pollen/flowers to TF fluxes (absolute and in % of annual mean flux) was calculated as: *INPUTpollen = TF two months pollen distribution period – TF (previous + following month)*


*Pinus and Picea also disperse pollen during the autumn and winter

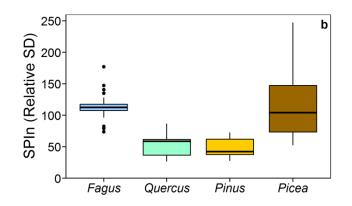
2. Inter-annual study (results)

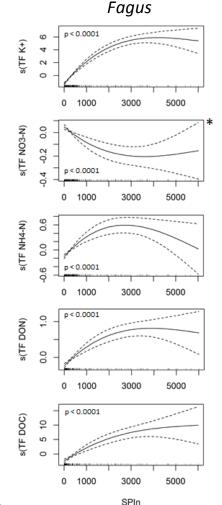
- Pollen/flowers contributed to spring TF most in *Quercus* > *Fagus* > *Pinus* > *Picea* stands.
- Differences might be related to pollen reactivity and to the amount of pollen distributed.



- In spring, pollen 'eats' 2-3% of annual TF N-NO₃⁻ deposition! More than indicated by the experiment, this was also observed for *Pinus* and *Picea*, presumably due to admixture of pollen from broadleaves (e.g., *Betula*).
- For Quercus, more than 10% of annual TF K⁺, N-NH₄⁺ and DON derives from pollen/flowers.

2. Inter-annual study (results)


• For *Fagus*, the input from pollen/flowers to TF was significantly higher in 'masting years', i.e. with SPIn > 80% of the annual mean.


17

2. Inter-annual study (results)

- For *Fagus and Picea*, the GAMM's broadly confirmed the results of the experiment, but model uncertainty was high for sparse higher values of SPIn.
- For *Quercus* and *Pinus*, most GAMM's were not valid because pollen is dispersed each year and <u>low variability of SPIn</u> makes it difficult to show the relationship.

• For N-NO₂⁻ (instable), the GAMM's were not valid

*15 April – 15 May

Objectives of this study

- **1.** Dissolution experiment
- Investigating the qualitative (quantitative) impact of pollen on TF.
- 2. Inter-annual study (data evaluation)
- Trying to find a link between TF deposition fluxes and airborne pollen concentrations.
- Calculating the quantitative impact of pollen on TF deposition fluxes.

3. Intra-annual study (TF samples)

 Gathering information on TF pollen spectra and investigating the link with TF fluxes / DOC characteristics.

3. Intra-annual study (ongoing)

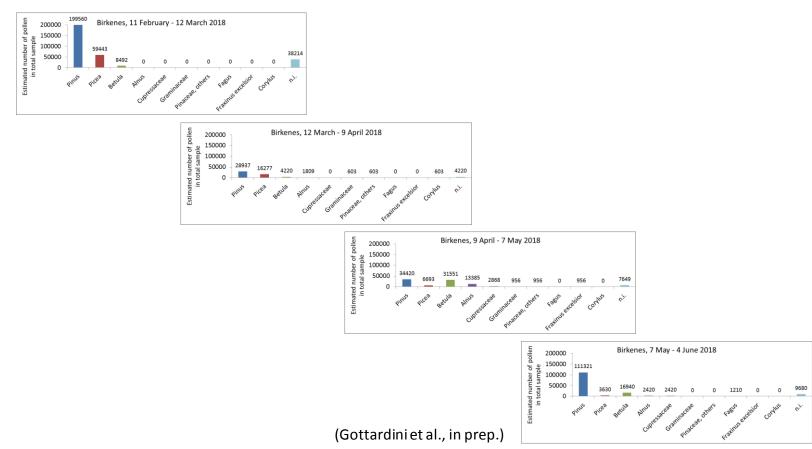
• During the spring of 2018, TF samples were collected in 60 Level II plots.

Country	Filters	Plots	Sampling frequency
Italy	11	1	weekly
UK	12	5	monthly
Switzerland	22	14	halfmonthly
Norway	11	3	monthly
Belgium, Flanders	25	5	halfmonthly
Germany, Bavaria	79	14	weekly
Finland	17	6	weekly
France	24	12	monthly
TOTAL	201	60	

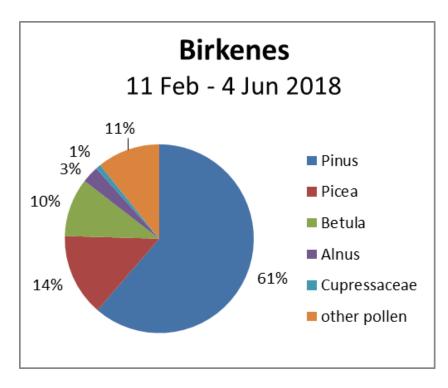
- Samples were filtered (5 μm, 0.45 μm) and chemical analysis was carried out.
- 201 filters (5 μm) are analysed to determine the pollen spectra (pollen microscopy).
- A further analysis is carried out to determine DOC characteristics and degradability.

(Gottardini et al., in prep.)

3. Intra-annual study (ongoing)


Pollen microscopy

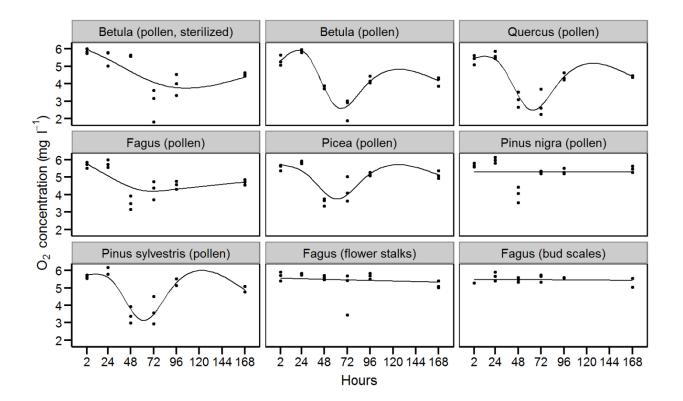
- Filters dissolved in acetone, washed, centrifuged.
- Known amount of 10-µm microspheres added for quantitative analysis.
- Fuchsine added for pollen staining.
- Slide preparation.
- Microscopic analysis (400x) for pollen identification and count (min 100 pollen grains per sample).


An example of results: Birkenes (NO)

Pollen composition changes over the season

An example of results: Birkenes (NO)

Pollen spectrum on the entire period



(Gottardini et al., in prep.)

Conclusions

- Pollen is an overlooked factor in forest nutrient cycling, particularly for K⁺, DOC, N and PO₄³⁻.
- Pollen induces complex N transformations involving inorganic N species as well as DON.
- These effects occur immediately or shortly after pollen is immersed in water and therefore can not be excluded.
- Accordingly, pollen biochemistry should be considered an inherent aspect of canopy exchange rather than contamination.
- The results of this study can be used to assist the validation of deposition data, the calculation of TF deposition and canopy budget modeling.

Thank you for your attention!

