Forest soils carbon cycle in a drier world - linking experiments, monitoring and natural gradients

Frank Hagedorn, M. Hartmann, M. Arend, J. Joseph, A. Gessler, C Guidi, M. Schaub, A. Rigling **WSL Birmensdorf, Switzerland**

Recent European drought extremes beyond Common Era background variability

Ulf Büntgen ^[]^{1,2,3,4}, Otmar Urban², Paul J. Krusic^{1,5}, Michal Rybníček^{2,6}, Tomáš Kolář^{2,6},

Büntgen et al., 2021 Nature Geosciences

Record breaking summer 2018

Monthly Precipitation Anomaly (%) in July as compared to 1981-2010

www.meteoSwiss

Drought effects on forest (soil) carbon cycle

Drought effects on forest (soil) carbon cycle

 \rightarrow Above and belowground activity are reduced

Drought effects on forest (soil) carbon cycle

- \rightarrow Above and belowground activity are reduced by drought
- \rightarrow Above and belowground is closely coupled
- \rightarrow Drought effects will feed back between above and belowground

high demand

low demand

Drought ≠ Drought

→ Duration & intensity of drought crucial for above- and belowground C cycle

Outline: Forest soil carbon cycling under drought

- **1. How does drought and rewetting impact** above- and belowground C cycle?
- 2. What are the short and longer term effects of drought in the belowground?

Drought (recovery) experiment

16 open-top chambers, each with 2 lysimeters

4 year old beech trees

 \rightarrow 2 months drought exposure then rewatering

Photosynthesis

Control

Post-drought

Delay of autumnal leaf senescence after a severe summer drought

Arend et al. 2016. Agricultural and Forest Meteorology

50% chlorophyll loss

control post-drought

CO₂ flush at rewetting

Burst of microbial cells by 1. osmotic shock

From Leaf to Soil: Tracking ¹³C

How fast and how much assimilates are allocated to the soil under drought and rewetting?

¹³C-pulse labelling in model ecosystems

Collaboration with M. Arend, J. Joseph, P. Bleuler, A. Zürcher, R. Siegwolf, J. Luster, M. Peters, A. Gessler

 \rightarrow Addition of ¹³CO₂ (50% atom) for 4 hours, total n=14 model ecosystems

¹³C tracking of assimilates

Drought

Leaf

Mycorrhizal roots

Soil respiration, ¹³C peak: 1 day moist, 4 days drought

¹³C tracking of assimilates

Leaf

roots

Mycorrhizal

Soil respiration

Drought

Belowground investment of assimilates

38±10%

20±5 %

Recovery of trees from drought

- belowground
- roots

\rightarrow Recovery partly compensates for losses during drought

\rightarrow Rapid transfer of assimilates to

\rightarrow Tree prioritize in repairing their

\rightarrow Impact C inputs into soils and thus soil C cycling

Forest responses to drought – short term

Time scale

/

Forest responses to drought – longer term

Time scale

Long-term irrigation experiment since 2003

Irrigation:+5 mm per night

Dobbertin *et al. 2010: Tree Physiology* Rigling *et al. 2013: Global Change Biology* Hartmann et al. 2017: Molecular Ecology

+610 – 790 mm in summer \rightarrow Removal of water limitation

Long-term irrigation experiment since 2003

Litterfall: species-specific responses

After 11 years; n=4 plots each with 6 traps

Herzog et al. (2014): PLOSOne

Soil CO₂ efflux

After 10-13 years, n=4 plots per treatment; 4 collars per plot

Water regime alters bacterial and fungal β -diversity

454 pyrosequencing

Hartmann et al. (2017) Molecular Ecology

DVA	Bacteria F(P)	Fungi F(P)
l	3.40 (<0.001)	3.85 (<0.001)
zon	2.88 (<0.001)	2.83 (<0.001)
$1 \times $ soil horizon	1.06 (0.305)	1.10 (0.265)

\rightarrow More bacteria with a oligotrophic life strategy under drought

Soil organic carbon stocks

0-20 cm; P_{Drought}<n.s.; n=4 plots per treatment, 4 profiles per plot, total n= 32 profiles

Soil organic carbon stocks

P_{Drought X Depth}<0.02; n=4 plots per treatment, 4 profiles per plot, total n= 32 profiles

Soil organic carbon distribution

C-losses in organic layer, C-gains in mineral soil under irrigation

- **1.** Increased litter decomposition + rhizodeposition
- **2. Enhanced DOC leaching**

3. Stronger incorporation of litter into minerals soil by macrofauna (e.g. earthworms)

Evaluating climate impact from natural gradients

Swiss forest soils MAT: 0.6 – 12°C MAP: 700 – 2400 mm

Soil C stocks decline with decreasing MAP

Mean annual precipitation (mm)

Gosheva et al. (2017) Ecosystems

MAT	MAP	Forest Type
8***	0.1 ^{ns}	8***
0.1 ^{ns}	11***	1*

Summary

- 1. Drought alters C cycling at various time scales
- 2. Trees can recover from drought, prioritize in repairing their roots
- Repeated summer drought reduces C fluxes and impacts biodiversity
 In the long-term: reduction of carbon stock

Photo: Agroscope, 2013

Thanks to teams Biogeochemistry Pfynwald

Soil as a Resource National Research Programme NRP 68

From canopy to soil: ¹³C tracing in a mature forest

Collaboration wth Decai Gao, R. Werner, A. Zürcher, A. Gessler, J. Jobin, J. Luster, G. Gleixner, M. Saurer, H. Hartmann, C. Poll

....

drought

<u>3h ¹³C-labelling in blocks</u>

5 trees under moderate

5 trees irrigated

Spatio-temporal ¹³C tracing to soil respiration

mg ¹³Cm⁻²h⁻¹

¹³C belowground allocation – threshold pattern

