

**FORECOM** 

# Responses of Swiss forests to long- and short-term environmental changes

Buchmann Nina<sup>1</sup>, Gharun Mana<sup>1</sup>, Hörtnagl Lukas<sup>1</sup>, Eugster Werner<sup>1</sup>, Etzold Sophia<sup>2</sup>, Zweifel Roman<sup>2</sup> <sup>1</sup> ETH Zurich

<sup>2</sup>WSL



nina.buchmann@usys.ethz.ch

### **Responses of Swiss Forests to Environmental Changes**

#### **Motivation**

#### **Biosphere-Atmosphere Exchange: Swiss FluxNet**

• Methodology, nested approach, sites

#### Net CO<sub>2</sub> Fluxes: Long-term and Short-term Responses to the Environment

- Mixed forest, Lägeren
- Spruce forest, Davos

#### Effects of Climate vs. N Deposition on WUE

- Mixed forest, Lägeren
- Spruce forest, Davos

#### **Lessons Learned**

### Long-term Environmental Changes: Air Temperature





(MeteoSwiss 2021)

### Long-Term Environmental Changes: Nitrogen Deposition



### Short-Term Environmental Changes: Drought



(Reichstein et al. 2013; Schuldt et al. 2020)



# More frequent in the futureEffects via soil & atmosphere





### Biosphere-Atmosphere Trace Gas Exchange

Core measurements: eddy-covariance technique for  $CO_2$ , but also for other gases (H<sub>2</sub>O vapor, CH<sub>4</sub>, N<sub>2</sub>O)



#### NEE

- F<sub>c</sub> = Net ecosystem exchange NEE
- R = Respiration
- A = Assimilation
- C sink: Assimilation >> Respiration
- C source: Respiration >> Assimilation
- Continuous measurements (20 Hz, 24 h/day, 7 days/week, 365 days/year, multiple years to decades)
- Spatial integration



(swisstopo; modell Kljun et al. 2015)



#### Swiss FluxNet = Six Active Flux Sites



### Swiss FluxNet = Six Active Flux Sites



Continuous CO<sub>2</sub>, H<sub>2</sub>O vapor fluxes, meteo available (... plus much more ...)

- Response to environmental change and management
- Use as a research platform (isotopes, phenology, remote sensing...) Long-term data sets (> 105 site-years)
- **Response to slow changes, e.g., climate change**

ICOS National Network Switzerland RINGO Readiness of ICOS





#### Long-term Net CO<sub>2</sub> Fluxes: Davos



- Early start of C sink activity: April (even at 1639 m asl)
- > Spring most important, also seen in tree rings

### Long-term Net CO<sub>2</sub> Fluxes: Lägeren



> Typically a C sink

- C sink activity starts in May, role of understory vegetation
- Largest uptake in summer, strong impact of phenology

#### Short-term Response to Extreme Summer: Davos



### Short-term Response to Extreme Summer: Lägeren



(Gharun et al. 2020, PTRS)

#### Compound Effects: Climate & N Deposition



- Many environmental factors changed simultaneously in past 112 years
- Effects on WUE?
  - $> CO_2 \uparrow$ , N  $\uparrow$ , Tair  $\uparrow \rightarrow$  WUE  $\uparrow$
- Disentangle climate from N deposition?

(Gharun et al., subm.)

### WUE = f (Climate & N Deposition)



- > WUE  $\uparrow\uparrow$ , particularly after 1950
- > Driven by N deposition, CO<sub>2</sub>, summer precip. & temperature (88%, 61%)

(Gharun et al., subm.)

### $Ci/Ca = f(CO_2 \& N Deposition)$



Ci/Ca ↓, N deposition ↑, particularly 1950 to 1980 (max. N dep.): via PS
Ci/Ca ↑, with CO<sub>2</sub> ↑ and N dep. ↓, particularly after 1980: typically unaccounted ...

.m.)

### Responses of Swiss Forests to Environmental Changes

#### **Biosphere-Atmosphere Exchange: Swiss FluxNet**

• Network with long-term measurements pay out over time.

#### **Net CO<sub>2</sub> Fluxes: Long-term and Short-term Responses to the Environment**

- Large inter-annual variations; both forests C sinks so far.
- Mixed forest on Swiss plateau (lowland) highly vulnerable to low SWC and high VPD.
- C budget of evergreen forest driven by ecosystem respiration.

#### Effects of Climate vs. N Deposition on WUE

- Strong N deposition effects on WUE.
- If neglected, WUE reconstruction solely based on climate might be biased.

## **Thanks for watching!**