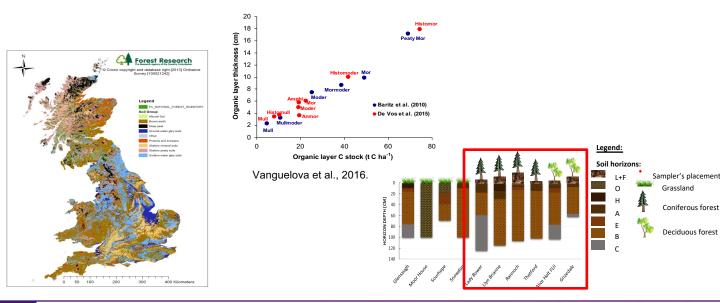

What is the current carbon storage and future carbon sequestration potential for forest soils in the UK?

Elena Vanguelova

Forest Research, UK

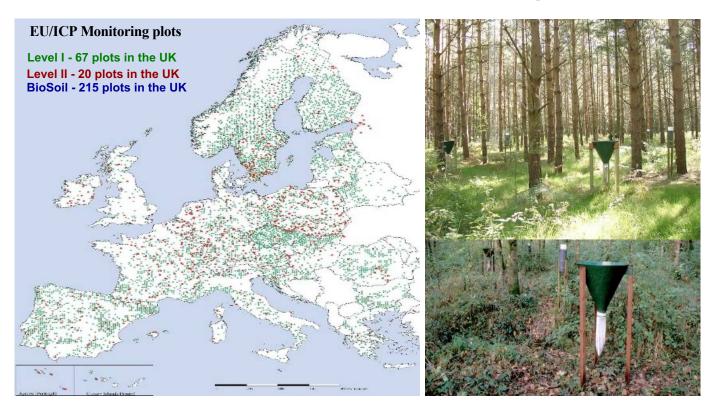
GB forests & woodlands

- 3.1 million hectares (13% of land)
- 0.8 Mha public forest estate
- 1.6 Mha conifer
- 1.5 Mha broadleaves
- Important ecosystem services
- Soil & water protection
- Biodiversity
- Cultural & recreational
- 8.4 Mt/a softwood, 0.4 Mt/a hardwood
- C stock and C sequestration
- Woodland creation England -10 to 12% by 2060; Scotland 17% to 25% of land area by 2050; Wales - 10% to 13.5% land cover by 2030.



UK soils

3


- High spatial variation in soils and forest fragmentation
- Plantation forestry historically mainly on poor and highly organic upland soils
- Native and broadleaved woodland in lowlands and more productive soils
- Drainage and ploughing at establishment//Fertilisation at the poor soils
- Forest soils differ from agricultural soils (higher acidity, better soil structure, larger spatial variability, less disturbed, <u>well developed</u> organic layers

FORECOMON, 7-12 June, 2021, WSL, Switzerland[©] Crown copyright

Use of extensive and intensive forest monitoring networks

4

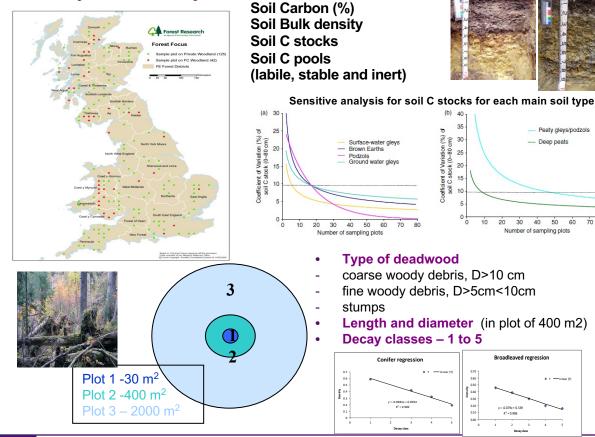
Forest Research

BioSoil – soil and deadwood carbon stocks

Podzol

Gleysol

70


Histosol

(Vanguelova et al., 2013)

1.50

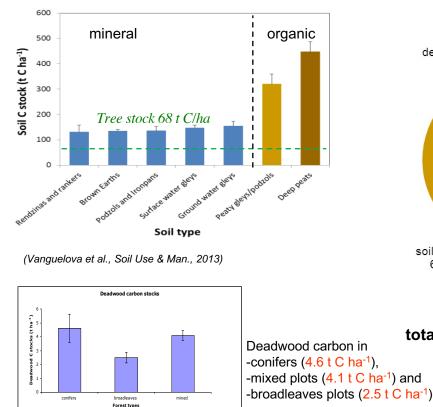
UK BioSoil plot locations - 215 plots

5

Soil analysis down to 80 cm

FORECOMON, 7-12 June, 2021, WSL, Switzerland © Crown copyright

Soil – sampling and scales


Vanguelova et al., 2016. Environ. Monit. and Asses.

7

UK forest carbon storage

Estimates from the National Forest Inventory (2010-14) & BioSoil survey (2005-10)

(Vanguelova et al.,in prep)

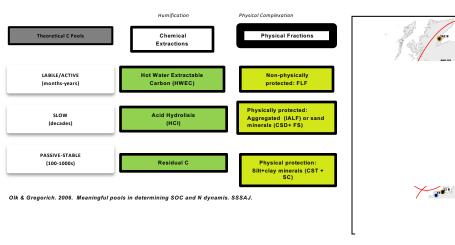
FORECOMON, 7-12 June, 2021, WSL, Switzerland Crown copyright

8

Total soil carbon stocks (Mt) per soil type, forest type and country

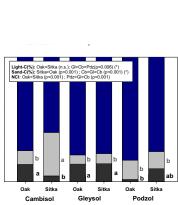
Country	England		Wales		Scotland			
Country Forest type	Coniferous	Broadleaves	Coniferous	Broadleaves	Coniferous	Broadleaves	Great Britain total	
Soil type							24	
(b) 0-100 cm								
Rankers and rendzinas	4.1	13.3	0.8	0.4	1.7	0.2	21	
Brown earths	22.0	41.5	12.0	10.5	21.7	11.2	119	
Podzols and Ironpans	8.5	6.1	6.7	0.1	25.7	7.6	55	
Surface-water gleys	12.4	28.4	1.5	3.1	18.2	5.2	69	
Groundwater gleys	1.9	4.7	0.1	0.4	0.0	0.0	7	
Peaty gleys/podzols	19.9	2.9	8.2	1.5	200.4	13.3	246	
Deep peats	12.9	4.3	6.4	0.3	78.2	2.2	104	
Total C stock per forest type	81.7	101.2	35.8	16.2	345.9	39.7		
Total C stock per country	183		52		386		621	
30% in		and wn earths y soils	Wales 40% brown earths 20% peaty soils		Scotland 55% peaty soils 20% deep peats		GB 40% peaty soils 20% brown earth 20% deep peats 15% gley soils	

(Vanguelova et al., 2013 Soil Use & Man.)



9

Soil carbon pools

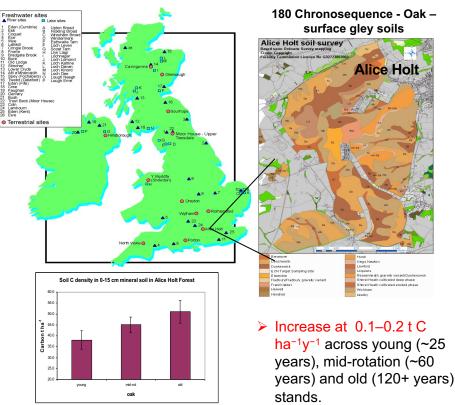

HWEC: Oak>Sitka (p=0.007); Pdz>Cb=Gl (p<0.001) HCI-C: Sitka=Oak (n.s.) : Pdz=Gl>Cb (p<0.001)

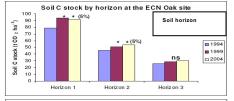
Stability of SOC in Typical Forestry Ecosystems in United Kingdom

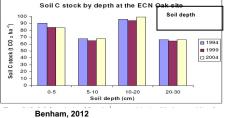
Significant differences in most C fractions among forests,
both in terms of *soil types* (stable C pools: gley soils and podzols)
and *tree species* (labile C pools in topsoils).

> Physically inert carbon associated with clay fraction - 70 % in Gley soils

(Villada, PhD thesis, 2013, UoR)


Ν

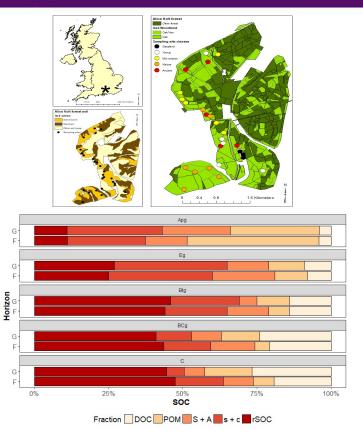

MS-0K 28

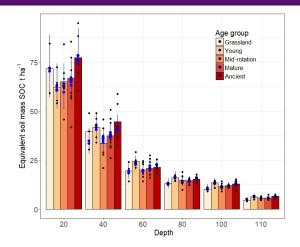


Forest chronosequence – Oaks on gley soils

Repeated soil survey (every 5 years) for 20 years

Increase at 0.34 t C ha⁻¹ y⁻¹, at topsoil mainly due to increase in horizon thickness.


Pitman et al, 2014


FORECOMON, 7-12 June, 2021, WSL, Switzerland Crown copyright

Forest Research

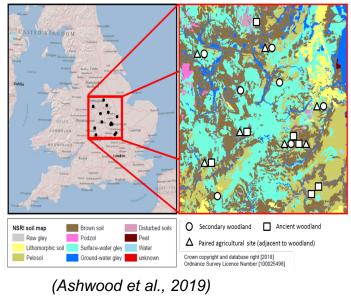
11

Deep carbon changes across forest chronosequences

- 50% of SOC stored in soil >20 cm depth in both forest and grassland
- Higher POM in topsoil in grassland compared to forest
- Higher resistant SOC in forest compared to grassland in deeper soils

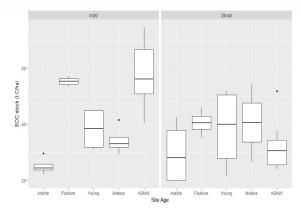
SOC physical fractionation in the **220 year old forest** stands (F) and grassland (G). Bars present total SOC t/ha, colours - SOC fractions

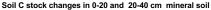
Dr Rita Razauskaite (PhD thesis)

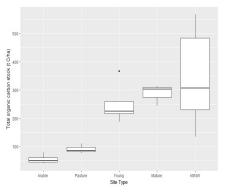

FORECOMON, 7-12 June, 2021, WSL, Switzerland Crown copyright

Woodland chronosequence – mixed Oaks on gley soils

Woodland Creation and Ecological Networks project


(WrEN; www.wren-project.com)

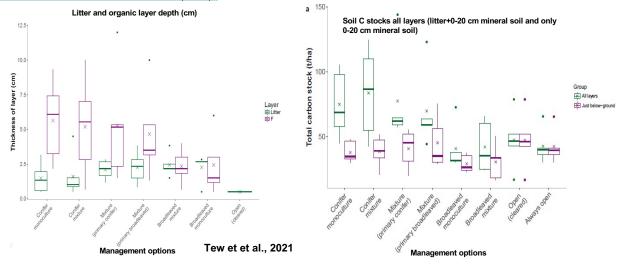

Forest Research



Increase at 0.2-0.4 t C ha⁻¹ y⁻¹, at topsoil –woodland on arable land

12

Soil C stock changes in organic + 0-40cm mineral soil

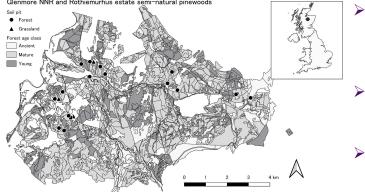


Management option	Category description	Calcareous plots	Acidic plots	Total number of plots	
Conifer monoculture	One species, conifer	2	4	6	
Conifer mixture	3+ species, all conifer	3	3	6	
Broadleaved monoculture	One species, broadleaved	2	3	5	
Broadleaved mixture	3+ species, all broadleaved	3	2	5	
Mixture (primary conifer)	3+ species, combination of broadleaved and conifers, largest component is conifer	2	3	5	
Mixture (primary broadleaved)	3+ species, combination of broadleaved and conifers, largest component is broadleaved	3	2	5	
Open (cleared)	Sites recently cleared from forestry to revert to heathland	3	2	5	
Always open	Historical heathland sites, never planted	3	2	5	
Total					

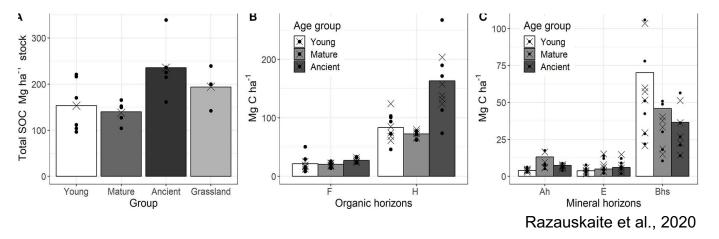
Eleanor Tew, PhD student, University of Cambridge/East Anglia FC district/FR

C accumulation in organic layer – at rate 0.5-0.9 t C/ha/y

No change of mineral sandy soil over >50 years of afforestation



FORECOMON, 7-12 June, 2021, WSL, Switzerland Crown copyright



orest Research

- Soil organic carbon stock changes in a >120 year-old Scots pine chronosequence and adjacent grassland sites on sandy podzolic soils.
- Significant carbon accumulation was measured in the top organic soil horizons with forest age.
- No changes were noted in the deeper mineral sandy soil horizons.

FORECOMON, 7-12 June, 2021, WSL, Switzerland © Crown copyright

14

Afforestation national scale projects

21 sites afforested since 1970's surveys in England and Wales

orest Research

15

Soil type: brown earths, gley soils, podzols

Forest type: conifer, broadleaves and mixed

Land use: arable, grassland, pasture, scrub

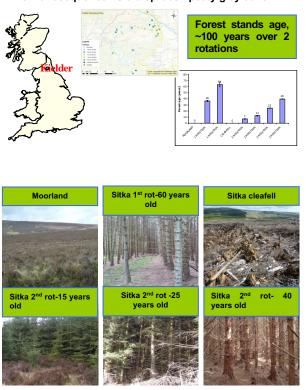
increasing surface organic layers under afforestation has provided the highest C stock increase under all forest types, on all soil types and from all previous land uses

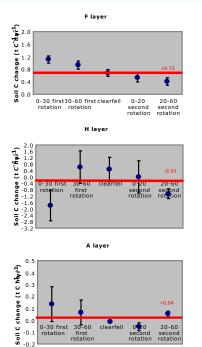
afforestation was neutral or for soil C sequestration when sandy soils are converted to conifer forestry.

40 sites afforested since 1970's surveys in Scotland

Soil type: deep peats, peaty gleys Peaty podzols, gleys, podzols

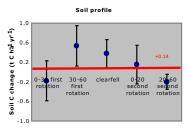
Forest type: conifer


Land use: grassland, pasture, moorland


- Organic layer Increase of 0.56 t C ha⁻¹ a⁻¹
- Sitka spruce 0.72 t C ha⁻¹ a⁻¹ larch with 0.33 t C ha⁻¹ a⁻¹
- All other things being equal, it is preferable to plant on gleys (gained 17 t C ha⁻¹) rather than podzols (lost 11 t C ha⁻¹)

Forest chronosequence –Sitka spruce on peaty gleys

Chronosequence - Sitka spruce - peaty gley soils


orest Research

Peaty gley soils

> C accumulation in organic layers – 0.5-0.7 t C ha/y

- C lost in peat horizon due to soil disturbance was compensated by C accumulation in the upper organic F horizon.
- Over two rotations of conifer afforestation, the total C stock of the organo-mineral soils was unchanged

Some conclusions

- Forests planted on mineral clay soils and under broadleaf tree species generally resulting in increased soil C content at a rate of 0.1-0.4 t C/ha/y.
- Mineral soil high in clay content could accumulate more stable carbon. So future targeting such soils for woodland creation will increase the long term soil carbon sequestration.
- Deeper and more spatial rooted tree species will aid carbon sequestration with soil depth.
- Conifer species will increase C in their organic layer at rate 0.33-0.9 t C/ha/y depending on species and rotation.
- Forest planted on previously arable land can result in the higher C sequestration in the soils compared to forest planted on grassland.
- Afforestation on organo-mineral or organic soils may result in substantial loss of soil C due to soil disturbance during forest planting. However, this can be compensated by increase in organic layers in the long term.
- Forest management practices can change these forest soil carbon storage and dynamics.

FR

Andy Moffat Tom Nisbet Sue Benham Frank Ashwood Ed Eaton James Morison FR Laboratory Technical support Unit Tania Sanders

PhD students Antia Villada Rita Razauskaite Eleanor Tew

