

Can forest trees take up and transport nanoplastics?

Maria Elvira Murazzi¹, Paolo Cherubini^{1,2}, Ivano Brunner¹, Ralf Kägi³, Matthias Saurer¹, Paula Ballikaya¹, Frank Hagedorn¹, Maya Al Sid Cheikh⁴, Gabriela Onandia^{5,6}, Arthur Gessler^{1,6,7}

¹WSL Swiss Federal Research Institute, Birmensdorf, Switzerland; ²Department of Forest and Conservation Sciences, Faculty of Forestry, University of British Columbia, Vancouver BC, Canada; ³ Eawag, Swiss Federal Institute of Aquatic Science and Technology, Dübendorf, Switzerland; ⁴Department of Chemistry, University of Surrey, Surrey, United Kingdom; ⁵ Research (Platform "Data", Leibniz Centre for Agricultural Landscape Research (ZALF), Müncheberg, Germany; ⁶ Berlin-Brandenburg Institute of Advanced Biodiversity Research (BBIB), Berlin, Germany; ⁷ Institute of Terrestrial Ecosystems, ETH Zurich, Zurich, Switzerland

Results

		Alltissues	Root1 (R1)	Root2 (R2)	Root3 (R3)	Stem	Leaves
	df	F-value	F-value	F-value	F-value	F-value	F-value
Tissue	4	66.8***	-	-	-	-	_
Treat	1	74.8***	178***	8.14**	0.05	2	4.63*
Species	2	4.1*	0.79	0.69	7.8**	6.9**	17.9***
Time	1	8.4**	22.7	0.02	1.3	0.58	0.01
Species x Treat	2	0.6	0.2	0.82	2.15	40.3***	1.41
Tissue x Treat	4	49.2***	-	-	-	-	-

Significance codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Left Differences in ¹³C between plants labelled with ¹³C-nanopolystyrene ($\Delta \delta^{13}$ C) for one or four days of treatment and control. Mean of 3 replicates and standard errors. Black stars indicate the statistically significant differences (P < 0.05; one-sided t-test) between controls and treatments

Right ANOVA testing the effects of exposing three tree species to 13 C-labelled nanopolystyrene for one or four days on δ^{13} C values in various tissues

Results

- The addition of 13 C-nanopolystyrene increased the δ^{13} C in all the three species significantly indicating that trees adsorbed and/or incorporated nanopolystyrene (ANOVA)
- Among the different tissues, the enrichment in ¹³C was statistically significant (one-sided *t*-test, *P* < 0.05) in the immersed part of the root (R1) in all the species after a **one-day treatment** and in oak after a **four-days treatment**. Stem tissues of birch were also significantly enriched (one-sided *t*-test, *P* < 0.01) after a **one-day treatment**

Discussions and conclusion

- The use of ¹³C-nanopolystyrene gave some first evidence of the potential uptake of nanoplastics in trees
- There are some but limited indications for nanoplastic transport in trees, which might occur on the surface or in the central cylinder of trees
- Experiments with larger trees using more sensitive detection methods are needed to identify importance for forests. Long-term effects of plastic on tree physiological functions needs to be tested

Acknowledgments

We would like to express our thanks to Brian Sinnet (EAWAG) for his advice and help running the DLS analyses and to our colleagues at the WSL: Claudio Cattaneo and Gabor Reiss for helping in the greenhouse; Dr. Jobin Joseph, Dr. Leonie Schönbeck, Shengnan Ouyang, and Dr. Marco Pecchia for helping to set up the experiment and data collection; Liska Dällenbach, Luc Schnell, Nadja-Tamara Studer, and Dr. Nasrullah Khan for helping with the harvest and Manuela Oettli for running the isotope-ratio mass-spectrometer analysis. We acknowledge financial support from the Swiss Federal Research Institute WSL

References

- Larue, C., Sarret, G., Castillo-Michel, H., & Pradas del Real, A. E. (2021). A critical review on the impacts of nanoplastics and microplastics on aquatic and terrestrial photosynthetic organisms. Small, 2005834.
- Allen S, Allen D, Phoenix VR, Le Roux G, Durantez Jimenez P, Simonneau A, Binet S, Galop D (2019). Atmospheric transport and deposition of microplastics in a remote mountain catchment. Nature Geoscience 12: 339-344.

