

CHRONIC NITROGEN DEPOSITION EFFECTS UNDER CLIMATE CHANGE IN AN AUSTRIAN KARST CATCHMENT

Dirnböck, T., Brielmann, H., Djukic, I., Geiger, S., Hartmann, A., Humer, F., Kobler, J., Kralik, M., Liu, Y., Mirtl, M., Pröll, G. FR UNIVERSITÉ DE FRIBOURG UNIVERSITÄT FREIBURG

LONG-TERM ECOSYSTEM MONITORING ZÖBELBODEN

energy, matter, water

Ecosystem Change biota, soil, biodiversity, habiats

Output energy, matter, water

© Umweltbundesamt

Long-term N cycle data

Air

Hood-Nowotny et al. 2021

Vuorenmaa et al. 2017, 2018

Leitner et al. 2020

NITROGEN DEPOSITION

- N depostion peaked in the late 1980ies
- Chronic N deposition above or at the Critical Load of ~15 kg/ha/yr since 1960ies
- N deposition is slowly declining (mostly NOx emission reductions)

Dirnböck et al. 2020. Forests

Catchment runoff:

- Small decrease in Ammonium
- Constant Nitrate runoff
- Peak N runoff during forest disturban

LONG-TERM TRENDS IN THE SOIL IN THE ENTIRE CATCHMENT

- No net accumulation of N in the soil albeit increasing N stocks in the organic layer
- Net loss of 19 kg N ha⁻¹ yr⁻¹ annually from the soil between 1992 and 2004
- Significant decrease in the mineral soil
 C:N ratio between 1992 and 2014 (-1.6)
 might indicate an N effect

n=64	1992 - 2004	1992 - 2014
N concentration	-	_
C:N	(+)	_
O horizon N stock	+	
0-10 cm N stock	_	

NADDITION EXPERIMENT (1x1m plots)

- > N addition: 5x ambient N deposition
- Results confirmed that adding inorganic N to soil high in recalcitrant SOM (soil C:N ratio of 21:1) leads to a decrease in decomposition and effective increase in soil C and N storage.
 - O horizon N stocks increased
 - > No significant effect in A and B horizons
- PLFA analyses and isotope tracing suggest that decomposition was controlled by microbial activity rather than community structure

Treatment	O-Horizon		A, B Horizons	
	C [mg cm ⁻²]	N [mg cm ⁻²]	No significant difference	
+N	112.3 ±73.3	4.9 ±3.2		
Control	60.0 ±65.3	3.0 ±3.3		

Significant (p<0.001) increase in C and N stocks in the O-horizon with 5x ambient N deposition

Hood-Novotny et al. (2021) Environ. Res. Commun. 3 (2021) 025001

FOLIAGE NUTRIENTS DO NOT INDICATE N SATURATION

Foliage concentrations/ratios in Norway spruce and European beech at Zöbelboden between 1992 to 2019. Arrows indicate significantly increasing and decreasing concentrations/ratios according to Mellert et al. 2012

g kg ⁻¹	Spruce		Baach	
	current year needles	one-year needles	Deech	
N	12.0±0.08 🗸	11.4±0.08 🖶	20.5±0.13	deficient
Р	1.1±0.01	0.8±0.01 🖊	0.7±0.01	
К	4.3±0.08	3.4±0.06	6.1±0.1	normal
				surplus
N:P	11.3±0.11	13.8±0.14	29.0±0.41	Derow minit
N:K	3.1±0.07	3.5±0.07	3.5±0.06 🖊	

Increasing N deficiency

> K and P deficiency did not worsen during the last 27 years

Summary of results

LIKELY FUTURE DEVELOPMENT

- Hyopthesis 1. N runoff will decrease because discharge will decrease (-12% until 2100) with climate change
 - Uncertainty: High-flow events may still increase N mobilization and runoff (unknown)
- > **Hypothesis 2.** Increased tree growth due to warming will strengthen N immobilization
 - > Uncertainty a: tree nutrition (not likely)
 - Uncertainty b: drought (no strong effects expected)
- > Hyopthesis 3. N deposition will decrease
 - Uncertainty: depends upon the success of current policies (likely)
- Hypothesis 4. Climatically triggered Spruce bark beetle outbreaks will cause pulses of N runoff

Comparisons between historical and projected mean monthly (a) discharge, (b) actual evapotranspiration, (c) precipitation, and (d) temperature (CORDEX RCP 8.5 climate model ensemble)

Dirnböck et al. 2020. Forests

CONTACT & INFORMATION

Thomas Dirnböck

0043-1-31304-3442 thomas.dirnboeck@umweltbundesamt.at

LTER Zöbelboden Information and Data

www.umweltbundesamt.at/umweltthemen/oekosystemmonitoring/zoebelboden

Umweltbundesamt www.umweltbundesamt.at

